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Adversarial Confidence Estimation Networks
for Robust Stereo Matching

Sunok Kim , Member, IEEE, Dongbo Min , Senior Member, IEEE, Seungryong Kim, Member, IEEE,

and Kwanghoon Sohn , Senior Member, IEEE

Abstract— Stereo matching aiming to perceive the 3-D geom-
etry of a scene facilitates numerous computer vision tasks
used in advanced driver assistance systems (ADAS). Although
numerous methods have been proposed for this task by leveraging
deep convolutional neural networks (CNNs), stereo matching
still remains an unsolved problem due to its inherent match-
ing ambiguities. To overcome these limitations, we present a
method for jointly estimating disparity and confidence from
stereo image pairs through deep networks. We accomplish this
through a minmax optimization to learn the generative cost
aggregation networks and discriminative confidence estimation
networks in an adversarial manner. Concretely, the generative
cost aggregation networks are trained to accurately generate
disparities at both confident and unconfident pixels from an
input matching cost that are indistinguishable by the discrim-
inative confidence estimation networks, while the discriminative
confidence estimation networks are trained to distinguish the
confident and unconfident disparities. In addition, to fully exploit
complementary information of matching cost, disparity, and color
image in confidence estimation, we present a dynamic fusion
module. Experimental results show that this model outperforms
the state-of-the-art methods on various benchmarks including
real driving scenes.

Index Terms— Stereo confidence, confidence estimation,
generative adversarial network, dynamic feature fusion.

I. INTRODUCTION

STEREO matching for reconstructing the 3-D geometric
configuration of a scene is a key enabler to realize various

tasks used in advanced driver assistance systems (ADAS),
including simultaneous localization and mapping (SLAM) and
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3-D reconstruction [1]–[5]. For decades, numerous methods
have been proposed for this task by leveraging handcrafted [1],
[6] and/or machine learning based techniques [7], [8]. How-
ever, they frequently fail to produce an accurate depth map
due to challenging elements, such as reflective surfaces, tex-
tureless regions, repeated pattern regions, occlusions [9]–[11],
and photometric deformations incurred by illumination and
camera specification variations [12], [13]. Especially, in real
driving circumstances, these limitations frequently appear,
which degrades stereo matching by existing methods.

To overcome these challenges, most approaches adopted a
post-processing step in a manner that a set of unreliable dis-
parities is first determined using confidence measures and then
refined using neighboring reliable disparities [14]–[17]. Con-
ventionally, hand-designed confidence measures [14]–[18] fol-
lowed by shallow classifiers [19], [20] have been used to pre-
dict the confidence, but they have shown limited performance.
Recent approaches have attempted to estimate the confidence
by leveraging deep convolutional neural networks (CNNs)
thanks to their high robustness [21]–[29], and have shown
highly improved performance in comparison to handcrafted
methods [14]–[18]. However, those aforementioned techniques
focus on estimating the confidence of a pre-determined initial
disparity only, ignoring the possibility of improving both the
disparity and confidence estimation performance simultane-
ously.

Recently, some methods [8], [29] proposed to improve
the quality of both disparity and confidence through deep
networks. The underlying assumption is that an improved
disparity helps to estimate the confidence more accurately.
They simultaneously train two sub-networks that consist of
the cost aggregation and confidence estimation networks.
Although disparity and confidence estimation performance
can be improved gradually during training, they do not have
an explicit mechanism that uses the confidence estimation
networks to boost the cost aggregation networks.

Meanwhile, generative adversarial networks (GANs) [30]
have achieved impressive results in numerous computer vision
tasks [31]–[35] that generates perceptually realistic solutions.
Some stereo matching approaches [36], [37] also adopted the
adversarial learning to estimate perceptually realistic disparity
maps. However, there are no studies investigating how the
discriminator can be used as the confidence estimator.

In this paper, we introduce novel deep networks and
a learning framework for overcoming the aforementioned
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Fig. 1. Our overall network configuration that consists of two sub-networks,
including generative cost aggregation networks and discriminative confidence
estimation networks. Given a left color image and an initial matching cost,
estimated by the existing matching cost computation methods [1], [7], as input,
our networks output disparity and its confidence map.

limitations of existing deep CNN-based confidence estimation
techniques. Inspired by GANs [30], the key idea is to design
the cost aggregation and confidence estimation networks to
be learned by the minmax optimization so that each network
can be improved in an iterative and boosting fashion. Con-
cretely, we formulate the two networks as two adversarial
players, i.e., generative cost aggregation and discriminative
confidence estimation networks as illustrated in Fig. 1. The
generative cost aggregation networks are trained to accurately
generate disparities at both confident and unconfident pixels
from an input matching cost that are indistinguishable by the
discriminative confidence estimation networks. At the same
time, the discriminative confidence estimation networks are
trained to distinguish the estimated confident and un-confident
disparities. By training our networks in the minmax optimiza-
tion fashion, both disparity and confidence maps, outputs of
our networks, can be improved simultaneoulsy.

In addition, recent CNNs based stereo confidence estimation
methods have been formulated by partially using single-
or bi-modal inputs, e.g., matching cost only [8], disparity
only [21], [22], matching cost and disparity [23], [29], or dis-
parity and color [27], [28]. Moreover, a simple concatena-
tion technique [38] is commonly used to fuse multi-modal
confidence features, disregarding that the fusion weights may
vary for each image depending on the attribute of confidence
features. In order to fully exploit matching cost, disparity, and
color image in confidence estimation, we present a dynamic
fusion module in the discriminative confidence estimation
networks in a way that an optimal fusion weight is dynamically
determined conditioned on each input.

We verify the proposed confidence estimation method using
aggregated ground control points (AGCPs) based propagation
as in [29]. The proposed method is extensively evaluated
through an ablation study and comparison with conventional
handcrafted and deep CNNs-based methods on various bench-
marks, including Middlebury 2006 [39], Middlebury 2014
[40], and KITTI 2015 [41].

We summarized the contributions of this paper as follows:
• We present an adversarial learning framework that jointly

estimates disparity and confidence maps, where the dis-
criminative confidence estimation network is formulated
to operate as a discriminator to boost the generative cost
aggregation network as well as generate the confidence.

• We present a novel confidence estimation network that
fully exploits complementary information of matching

cost, disparity, and color image through a dynamic fusion
module.

• We conduct extensive experiments to evaluate our method
on disparity and confidence estimation on various bench-
marks.

The remainder of this paper is organized as follows. Sec. II
describes the related works of our method. Sec. III analy-
ses existing methods for disparity and confidence estimation
and their limitations. Sec. IV presents the proposed network
architectures and a learning framework. Sec. V introduces
the validation method. Experimental results on disparity and
confidence estimation are given in Sec. VI. Finally, conclusion
and suggestions for future works are given in Sec. VII.

II. RELATED WORKS

A. Handcrafted Confidence Measures

Until the last few years, there have been extensive literatures
in confidence estimation, mainly based on handcrafted confi-
dence measures [11], [42], [43]. A comprehensive review by
Hu and Mordohai [44] concluded that there is no single con-
fidence feature that yields consistently optimal performance.
To solve this limitation, there have been various approaches
to benefit from the combination among a different set of
confidence features, and train a shallow classifier such as
random decision forest [14]–[16], [18]. Haeusler et al. [18]
combined confidence features consisting of left-right con-
sistency, image gradient, and disparity variance. A similar
approach was also proposed in [14]. However, the perfor-
mance of the aforementioned methods is still limited since
the selected confidence features are not optimal. To select the
set of optimal confidence features among multiple confidence
features, Park and Yoon [15] proposed to utilize the machine
learning technique that computes the importance of confidence
features and train the regression forest classifier using selected
confidence features. Poggi and Mattoccia [16] employed the
set of confidence features from disparity map. While the
aforementioned methods detect unconfident pixels in a pixel-
level, Kim et al. [17] leveraged a spatial context to estimate
the confidence in a superpixel-level. All of those methods used
handcrafted confidence features, and thus they may not be
optimal to detect unconfident pixels.

B. Deep CNN-Based Confidence Measures

With the recent progress of deep CNNs, several approaches
have been proposed to measure the stereo confidence through
deep CNNs [21]–[25], [27]–[29]. A quantitative evalua-
tion of confidence measures that use shallow classifiers or
CNN-based classifiers has been performed in [25]. Formally,
these CNN-based methods first extract the confidence features
from only disparity [21], [22], both disparity and cost vol-
ume [23], [29], and both disparity and color [28] to predict
the confidence. In [21], a confidence estimation network
was proposed that only takes a left disparity map as input.
Seki and Pollefeys [22] proposed to use both left and right
disparity maps in deep networks for improving the confidence
prediction accuracy. In [24], the confidence map is refined
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by leveraging a local consistency within an estimated confi-
dence map. Tosi et al. [26] proposed a novel self-supervised
strategy, which generates training labels by leveraging a pool
of appropriately combined conventional confidence measures.
There were attempts to benefit from a color image [27], [28].
They encode the local information from the color image to
detect high frequency patterns, showing a performance gain in
the confidence estimation. In spite of recent advances in the
confidence estimation, the aforementioned methods estimate
the confidence of an initial pre-determined disparity and do
not consider improving its accuracy.

Recently, some methods [8], [29] attempted to improve the
quality of disparity and its corresponding confidence simul-
taneously, under the assumption that an improved disparity
helps to estimate confidence more accurately. They formulate
two sub-networks consisting of cost aggregation networks
and confidence estimation networks, and simultaneously learn
them during training. Shaked and Wolf [8] jointly estimated
both disparity and confidence maps. Kim et al. [29] also tried
to estimate improved disparity and confidence maps through
a unified deep network. However, they do not have an explicit
mechanism to boost each network, where the confidence esti-
mation networks cannot boost the cost aggregation networks.
Contrarily, we formulate an adversarial learning framework
to boost both the cost aggregation and confidence estimation
networks.

C. Generative Adversarial Networks

GANs [30] have achieved impressive results in numerous
computer vision and image processing applications, such as
image colorization [31], [32], image super-resolution [33],
image inpainting [34], and representation learning [35],
enabling generating of perceptually realistic solutions. In dis-
parity estimation literatures, some methods [36], [37], [45],
[46] also exploited the adversarial learning to estimate percep-
tually realistic disparity maps. Reference [45] tried to solve a
monocular depth estimation problem while our method tries
to solve two-view stereo matching problem. Reference [46]
tried to solve cross-spectral, i.e., color and infrared images,
stereo matching, while our method considers stereo matching
for two color images. Some methods [36], [37] tried to solve
stereo mathing for two color images similar to ours, but the
discriminator networks in these methods cannot operate as
confidence estimator, and there are no studies to investigate
how the discriminator networks can be used as the confidence
estimator. Taking such a boosting mechnism into account is
the topic of this paper.

III. PROBLEM STATEMENT

A. Confidence Estimation of Initial Disparity

Let us define a pair of stereo images {I l , I r }. The objective
of stereo matching is to estimate a disparity Di that is defined
for each pixel i = [ix, iy]T between stereo image pairs.
To this end, the matching costs Ci,d between I l

i and I r
i ′ , where

i ′ = i −[d, 0]T , among disparity candidates d = {1, . . . , dmax}
are first measured, and then aggregated and/or optimized for
determining the disparity Di . Since most existing methods,

including deep CNN-based methods [7], [47], cannot provide
fully reliable solutions due to the inherent challenges of
stereo matching, several approaches [14], [15], [17], [22], [23]
employed an additional module to predict a confidence Qi of
the estimated disparity Di .

Formally, the confidence estimation pipeline involves
extracting confidence features from matching costs, disparity
maps, and/or color images, and training the confidence predic-
tor using the confidence features and ground-truth confidence
maps. Unlike conventional approaches that use handcrafted
features to train a shallow classifier [14]–[18], recent methods
attempted to estimate the confidence by training deep CNNs
such that the confidence features and predictors are trained
simultaneously in an end-to-end manner [21]–[23]. The afore-
mentioned approaches estimate only the confidence Qi of a
pre-determined initial disparity Di , and adopt the subsequent
disparity refinement scheme to improve the initial disparity Di

using the estimated confidence Qi .

B. Existing Approaches for Unified Disparity and Confidence
Estimation and Their Limitations

More recently, some methods [8], [29] have designed deep
networks to simultaneoulsy improve the quality of disparity Di

and its confidence Qi at each training iteration, and shown
that an improved disparity helps to estimate its confidence
more accurately. Concretely, these approaches formulate two
modules as shown in Fig. 2(a), including cost aggregation
networks that provide the refined cost Ct and disparity Dt at
t-th iteration from an initial cost C , i.e., {Ct , Dt } =
G(C; WG). For the simplicity of notation, we denote Ct =
GC(C; WG) and Dt = G D(C; WG) for the refined cost and
disparity, respectively,1 and confidence estimation networks
that estimate the confidence Qt , i.e., Qt = F(Ct , Dt ; WF ),
where WG and WF represent network parameters, respectively.
For the sake of simplicity, let us represent G(·; WG) and
F(·; WF ) as G(·) and F(·), respectively.

To learn these networks {G, F} in an end-to-end manner,
two loss functions can be used. First, the cost aggregation
networks use a disparity regression loss with L1 norm [29]
with respect to a ground-truth disparity D∗ such that

Ldisp(G) = EC∼pdata (C)[‖G D(C) − D∗‖1], (1)

where it is defined for all C following the data distribution
pdata(C). Alternatively, Ldisp can also be defined as the
cross-entropy loss [8] with Ct and D∗.

Second, the cross-entropy loss [8], [29] with respect to
the ground-truth confidence Q∗ is generally used to train
confidence estimation networks. The confidence estimation
network that distinguishes confident and unconfident samples
is trained by maximizing the following energy function:
Lconf(G, F) = EC∼ppos (C)[log F(G(C))]

+ EC∼pneg(C)[log (1 − F(G(C)))], (2)

1It should be noted that since Dt is derived from Ct using a soft-argmax
function [8], [29], [47] with no trainable parameters, the network parameters
of GC and G D are shared as WG .
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where the first and second terms are defined for positive
(or confident) and negative (or unconfident) samples, i.e., C ∼
ppos(C) and C ∼ pneg(C), respectively. In addition, to build
positive and negative samples, the ground-truth confidence
is defined such that Q∗ = T (a; ρ) with a truncation func-
tion [29], where T (a; ρ) = 1 if a < ρ, 0 otherwise. Note that
the ground-truth confidence Q∗ is actively varying according
to the estimated disparity Dt as evolving training iterations.

A total loss function is then defined as Ldisp(G) +
λLconf(G, F) with λ controlling the relative importance of the
two objectives, and the networks can be trained by minimizing
each corresponding loss function:

{G∗, F∗} = argmin
G

Ldisp(G) + λ argmax
G,F

Lconf(G, F). (3)

Since two networks {G, F} are trained in an iterative manner,
an initial disparity D and confidence Q can be improved as
Dt and Qt . Although these methods [8], [29] have shown the
state-of-the-art performance compared to existing confidence
estimation methods [21], [22] that use the fixed ground-truth
confidence Q∗ (i.e., Dt = D) during training, they do not
have an explicit mechanism such that confidence estima-
tion networks F improve the cost aggregation networks G
explicitly. To be specific, by maximizing Lconf(G, F) in (3),
cost aggregation networks G generates positive and negative
samples that are well distinguishable by confidence estimation
networks F . However, there is no explicit mechanism that F
cannot help to improve the ability of G to generate reliable
matching cost and disparity maps.

IV. PROPOSED METHOD

A. Motivation and Overview

To alleviate the aforementioned limitations of existing meth-
ods [8], [29], we present novel network architectures and a
learning technique. The proposed networks consist of two sub-
networks, including generative cost aggregation networks G
and discriminative confidence estimation networks F . Inspired
by GANs [30], our objective is to formultate these two
networks as two adversarial players so that each network can
be improved in an iterative and boosting manner, as illustrated
in Fig. 2(b). Concretely, the generative cost aggregation net-
works G are designed to train the mapping function from
an initial cost C to refined costs Ct and disparity Dt at
t-th iteration such that {Ct , Dt } = G(C; WG). At the same
time, the discriminative confidence estimation networks F are
trained to distinguish positive and negative samples of refined
cost Ct , disparity map Dt , and color image I l by estimating
the confidence Qt as the mapping: Qt = F(Ct , Dt , I l ; WF ).

Moreover, existing deep confidence estimation networks [8],
[21]–[23], [29] have been formulated using matching cost
only [8], disparity only [21], [22], unified matching cost and
disparity [23], [29], or disparity and color image [27], [28] as
input, and they cannot benefit from the joint use of tri-modal
data, including matching cost, disparity, and color image.
To fully exploit tri-modal data consisting of refined cost Ct ,
disparity Dt , and color image I l , the discriminative confidence
estimation networks have the dynamic fusion module where

Fig. 2. Intuition of our networks: (a) conventional unified depth and
confidence estimation methods [8], [29] and (b) ours. Unlike existing meth-
ods [8], [29], our networks, consisting of the generative cost aggregation
and discriminative confidence estimation networks, are designed to be trained
in the minmax optimization fashion. Discriminative confidence estimation
networks are trained to distinguish generated positive samples (i.e., matching
cost Ĉ t and disparity D̂t ) and negative samples using the loss function Lconf .
The derivative of Lconf with respect to negative samples is only back-
propagated, which enables generative cost aggregation networks generate
samples that are indistinguishable by the discriminative confidence estimation
networks.

the optimal fusion weight is dynamically determined condi-
tioned on each input.

B. Network Architecture

1) Generative Cost Aggregation Networks: Similar to [29],
generative cost aggregation networks consist of a residual
convolutional module, a normalization layer, a top-K pool-
ing layer, and a soft-argmax layer, as shown in Fig. 3.
Specifically, the networks first aggregate the initial matching
cost C using the encoder-decoder networks with skip layers
similar to U-Net [48], consisting of sequential convolutional
layers followed by batch normalization (BN) and rectified
linear units (ReLU). We sequentially apply 2×2 max-pooling
operators, resulting in a total down-sampling factor of 4.
In the decoding parts, the intermediate features are upsampled
using bilinear deconvolutional filters [48], [49], and concate-
nated with corresponding encoder features using skip layers.
We compute a residual matching cost and estimate the aggre-
gated matching cost Rt at t-th iteration. Note that the net-
work parameters WG are defined only on the residual cost
aggregation module and there are no trainable parameters at
subsequent layers. We then use the normalization layer that
generates the matching probability volume Pt at t-th iteration
to deal with the scale variation problems within matching cost
volume [23], [47] as follows:

Pt
i,d = exp(−Rt

i,d/σ)∑
u exp(−Rt

i,u/σ)
, (4)

where u = {1, . . . , dmax}, and σ is a parameter for adjusting
the flatness of the matching cost.

Furthermore, to deal with redundant parts in Pt that distract
the performance of confidence estimation, we also use a top-K
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Fig. 3. Illustration of the generative cost aggregation networks G , consisting of a residual convolutional module, a normalization layer, a top-K pooling
layer, and a soft-argmax layer.

Fig. 4. Illustration of the discriminative confidence estimation networks F ,
consisting of tri-modal feature extractors for matching cost, disparity, and
color image, an adaptive fusion module, and a confidence estimator.

pooling layer [29], where Pt is projected into a fixed length.
The refined matching probability Ct is obtained as follows:

Ct
i,k = maxk

d Pt
i,d , (5)

where maxk(·) is the k-th maximal value for k = {1, . . . , K }.
Finally, to estimate the current disparity Dt at t-th iteration,

we use the soft-argmax layer [29], [47] as follows:
Dt

i =
∑

d
Pt

i,d d. (6)

2) Discriminative Confidence Estimation Networks: Dis-
criminative confidence estimation networks take tri-modal data
consisting of matching cost2 Ct , disparity Dt , and color
image I l as input, and output confidence Qt , as shown
in Fig. 4. Especially, unlike [29], our confidence estimation
networks additionally use color information, enabling us to
leverage a spatial context and estimate edge-preserved con-
fidence maps [17]. Concretely, the discriminative confidence
estimation networks first extract convolutional features fCt ,

2Note that the input of the confidence estimation network is the matching
probability, but we refer to it as matching cost for clarity.

Fig. 5. The effect of the color feature extractor in our confidence estimation
networks: (a) a left color image, (b) an initial disparity map estimated using
MC-CNN [7], (c) an estimated confidence map using cost and disparity as
inputs, (d) a refined disparity map by using (c) AGCPs-based propagation,
(e) an estimated confidence map using cost, disparity, and color as inputs,
and (f) a refined disparity map by using (e) AGCPs-based propagation. Using
color feature extractor, the confidence estimation networks produce the result
well aligned with the color image. (Best viewed on electronic version).

fDt , and f I l from Ct , Dt , and I l using network parame-
ters W C

F , W D
F , and W I

F , respectively, and then fuse them.
Fig. 5 shows the effectiveness of the proposed confidence
estimation. Similar to the generative cost aggregation net-
works, the discriminative confidence estimation networks also
consist of sequential convolutional filters, followed by BN and
ReLU. The pooling operation is not used to preserve the spatial
resolution in this network.

In literatures [29], [50], a simple concatenation approach
has been commonly used to fuse multi-modal features. How-
ever, such a simple approach often fails to generate optimal
confidence features, since the fusion weights are fixed without
considering test data at inference. Namely, the optimal fusion
weights of the tri-modal features may vary depending on their
attribute, but the simple concatenation technique is unable to
consider such a dynamic fusion. To alleviate this limitation,
inspired by [51], we introduce a dynamic fusion module for a
dynamic combination of fCt , fDt , and f I l , where the optimal
fusion weight W H,∗

F is trained with respect to each input with
an additional convolutional network, called filter-generating
network, such that W H,∗

F = H ( fCt , fDt , f I l ; W H
F ) with net-

work parameters W H
F . Unlike the fixed fusion weights as

in [29], W H,∗
F is estimated conditioned on input, thus enabling

more optimal fusion. The confidence is finally estimated
through fusion networks with parameters W P

F . The confidence
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Qt can be estimated as

Qt = F(Ct , Dt , I l; WF )

= F( fCt , fDt , f I l ; H ( fCt , fDt , fI l |W H
F ), W P

F ), (7)

where WF = {W C
F , W D

F , W I
F , W H

F , W P
F }.

C. Loss Functions

1) Loss for Generative Cost Aggregation Networks: A
major challenge to train stereo matching networks is the lack
of dense ground-truth disparity maps especially for outdoor
scenes such as real driving scenes. The synthetic outdoor data
with ground-truth disparity maps is publicly available, but they
incur the domain adaption issue [52]. Some benchmarks [53]
provide outdoor data taken with depth sensors, e.g., LiDAR,
but sparse disparity maps are not suitable for training the
networks in a fully supervised manner. To overcome this
issue, we use an unsupervised loss function using an image
reconstruction loss [54] as well as a supervised loss function
based on L1 norm to directly regress the disparity map, similar
to [29]. The loss function Ldisp(G) is defined as follows:
Ldisp(G) = EC∼pdata(C)[‖G D(C) − D∗‖1]

+ EC ′∼pdata (C ′)[‖I r (G D(C ′)) − I l‖1], (8)

where I r (G D(C ′)) is a warped right color image using the
estimated disparity G D(C ′), implemented by a bilinear sam-
pler [49] that enables end-to-end learning. While C is only
defined for sparse ground-truth disparity D∗, C ′ is defined for
all pixels. It should be noted in our method, by learning gener-
ative cost aggregation networks G with the loss function Lconf
for confidence estimation networks, which will be described
in the following, as well as Ldisp, more perceptually plausible
disparity maps can be estimated.

2) Loss for Discriminative Confidence Estimation
Networks: To learn the discriminative confidence estimation
networks, we employ the cross-entropy loss function [8], [29]
with respect to the ground-truth confidence map. However,
unlike existing methods [8], [29], we design the loss function
Lconf(G, F) to adversarially train two networks G and F .
Namely, the discriminative confidence estimation networks
F are trained to distinguish positive and negative samples
(i.e., matching cost and disparity) more discriminatively,
while the generative confidence estimation networks G are
trained to generate negative samples that have the distribution
more similar to that of positive samples as evolving training
iterations [30]. Following this design strategy, the loss
function Lconf(G, F) is defined as follows:
Lconf(G, F)

= EĈ t∼ppos (Ct ),D̂t∼ppos (Dt ),I l∼ppos (I l )[log F(Ĉt , D̂t , I l)]
+ EC∼pneg(C),I l∼pneg(I l )[log (1 − F(G(C), I l))], (9)

where the first and second terms are defined for positive and
negative samples, i.e., C ∼ ppos(C) and C ∼ pneg(C),
respectively. Ĉt and D̂t represent generated positive samples
from generative cost aggregation networks G determined with
respect to the ground-truth confidence Q∗. Although positive
samples Ĉt and D̂t are estimated from G, the derivative

Fig. 6. The effects of the proposed adversarial learning technique: (a) a
left color image, (b) an initial disparity map estimated using MC-CNN [7].
(c) and (d) are an intermediate disparity map and an estimated confidence
map without adversarial confidence learning, (e) and (f) are obtained with
adversarial confidence learning. By learning the disparity and confidence maps
in an adversarial manner, our method provides more plausible intermediate
disparity and confidence maps. (Best viewed on electronic version).

of Lconf with respect to G for positive samples cannot be
backpropagated, while the derivative for negative samples is
only backpropagated. As exemplified in Fig. 6, by using the
confidence loss Lconf , our method provides more plausible
intermediate disparity and confidence maps.

3) Full Objectives: Similar to GANs [30], we formulate
the minmax optimization to learn our full networks consisting
of generative cost aggregation networks and discriminative
confidence estimation networks. The total loss fuction Ltotal
is defined as follows:

Ltotal(G, F) = Ldisp(G) + λLconf(G, F), (10)

and the networks are then optimized in an adversarial fashion
such that

{G∗, F∗} = argmin
G

max
F

Ltotal(G, F)

= argmin
G

Ldisp(G)

+ λ argmin
G

max
F

Lconf(G, F). (11)

Within this optimization, G is trained to generate the dis-
parity not only more similar to the ground-truth disparity
but also indistinguishable by F , thus providing more reliable
and error-reduced disparity. With progressively improved hard
confident and unconfident samples, the ability of confidence
estimation of F can also be improved. Note that unlike the
previous methods [8], [29] where the confidence estimation
networks cannot boost the disparity estimation performance,
our method mutually boosts the diparity and confidence esti-
mation.

In practice, at an early stage of training, generated negative
samples are clearly different from generated positive sam-
ples, and thus discriminative confidence estimation networks
can easily distinguish the generated samples. In this case,
log (1 − F(G(C), I l )) in Lconf easily saturates. To solve this,
rather than training G by minimizing log (1 − F(G(C), I l )),
we train G to maximize log F(G(C), I l) similar to [30].
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Fig. 7. Visualizations of intermediate disparity and confidence maps as evolving training iterations on MID 2014 dataset [40]: (a) a color image and an
initial disparity, and results by (top) Kim et al. [29] and (bottom) Ours at each epoch of 50 in (b), (c), 100 in (d), (e), and 150 in (f), (g).

Fig. 8. Comparisons of unified depth and confidence estimation methods on MID 2006 [39] and MID 2014 [40] datasets, using census-SGM (first two raws)
and MC-CNN (last two rows): (a) color images, and final disparity, confidence, and refined disparity maps with propagation of (b), (c), (d) Kim et al. [29]
and (e), (f), (g) Ours. Our method has shown the robustness againt challenging regions such as reflective surfaces and textureless regions.

The training optimization is then reformulated as follows:
{G∗, F∗} = argmin

G
Ldisp(G) + λ argmax

F
Lconf(G, F)

+λ argmax
G

EC∼pneg(C),I l∼pneg(I l )[log F(G(C), I l )],
(12)

This objective function results in the same fixed point of the
dynamics of G and F but provides much stronger gradients
at early stages of training.

V. VALIDATION

In this section, we introduce the validatation method to
verify the effectiveness of our confidence estimation method
in the post-processing step of the stereo matching pipeline.
Concretely, as described in [29], the predicted confidence can
be incorporated in AGCPs-based propagation as in [55]. First,
we set GCPs that are classified as confident pixels. Then,
we globally propagate the GCPs through an Markov random
field (MRF)-based optimization. We utilize an aggregated data

term to mitigate propagation errors by inaccurately estimated
confidences. It was shown in [55] that a more robust data con-
straint using an aggregated data term leads to a better quality
in the sparse data interpolation. In this context, we define the
energy function for refined disparity map D̄ according to final
disparity map D′ (i.e., Dt after convergence) as follows:

∑
i

⎛
⎜⎝

∑
v∈Mi

hvcI
i,v (D̄i − D′

v )
2 + γ

∑

j∈N 4
i

wI
i, j (D̄i − D̄ j )

2

⎞
⎟⎠ ,

(13)

where Mi represents a set of neighborhoods, and is not limited
to a 4-neighborhood, but more neighbors are used for ensuring
a large support. We define cI

i,v using a bilateral kernel between
pixel i and v in the feature space consisting of color intensity
I and spatial location. hv is the binary mask to indicate the
GCPs. Similar to cI

i,v , wI
i, j is the affinity between i and j in

the feature space consisting of color intensity I and spatial
location, and N 4

i represents a 4-neighborhood. γ controls the
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Fig. 9. Comparisons of unified depth and confidence estimation methods on KITTI 2015 [41], using census-SGM (1-4 rows) and MC-CNN (5-8 rows):
(a) color images and disparity, (b) final disparity, (c) confidence, and (d) refined disparity maps with propagation of (top) Kim et al. [29] and (bottom) Ours.
Our method has shown consistently reliable performances on pole, bicycle, and pedestrian regions.

relative importance of data and smoothness terms. This simple
quadratic optimization can be efficiently solved using [55].

VI. EXPERIMENTAL RESULTS

A. Training Details

The proposed method was implemented in MATLAB with
VLFeat MatConvNet toolbox [56] and simulated on a
PC with TitanX GPU. We make use of the stochastic gradient
descent with momentum, and set the learning rate to 1×10−5

and the batch size to 20. To compute an initial matching cost,
we used a census transform with a 5 × 5 local window and
MC-CNN [7], respectively. For the census transform, we
applied SGM [1] on estimated cost volumes by setting P1 =
0.008 and P2 = 0.126 as in [15]. For computing the
MC-CNN, ‘KITTI 2012 fast network’ was used, provided at
the author’s website [57]. We set the threshold ρ as 0.9, and σ
as 100 and 0.05 for census-SGM and MC-CNN, respectively.

B. Experimental Setup

In the following, we evaluated the proposed method in com-
parison to conventional shallow classifier-based approaches,
such as Haeusler et al. [18], Spyropoulos et al. [14], Park and
Yoon [15], Poggi and Mattoccia [16], Kim et al. [17], and
CNNs-based approaches using disparity only, such as Poggi

and Mattoccia (CCNN) [21], Seki and Pollefey (PBCP) [22],
matching cost only, such as Shaked and Wolf [8], both
disparity and matching cost, such as Kim et al. [29], and both
color and disparity, such as Fu et al. (LFN) [28]. We obtained
the results of [15], [17], and [29] by using the author-provided
code, while the results of [8], [14], [18], [22], [28] were
obtained by our own implementation. We re-implemented
methods of [16] and [21] based on the author-provided code.

Following experimental settings of [29], we seperately
trained our networks for indoor and outdoor datasets. For
an indoor setting, we used 80 stereo pairs on the MPI
dataset [58] for training, and evaluated the trained networks
on 21 stereo pairs on the Middlebury 2006 (MID 2006)
dataset [39] and 13 stereo pairs on the Middlebury 2014
(MID 2014) dataset [40]. We cropped the training images
into 256 × 256-sized patches and totally obtained about
100,000 patches. For an outdoor setting, we used 194 stereo
pairs on KITTI 2012 dataset [41] for the sparse supervised
loss and 40,000 stereo pairs for the dense unsupervised loss
in Ldisp during training, and evaluated the trained networks on
200 stereo pairs on KITTI 2015 dataset [41] and Cityscapes
dataset [59]. Note that to optimize the loss function Ldisp,
consisting of supervised- and unsupervised losses, we used
both supervised- and unsupervised losses after performing
200 epoches with the supervised loss only.
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TABLE I

THE BMP OF THE FINAL DISPARITY MAP ON MID 2006 [39], MID 2014 [40], AND KITTI 2015 [41] DATASET WITH CENSUS-BASED SGM. THE BMP
IS MEASURED WITH ONE AND THREE PIXEL ERRORS. THE RESULT WITH THE LOWEST BMP IN EACH EXPERIMENT IS HIGHLIGHTED

Fig. 10. The effectiveness of unified depth and confidence estimation of our
method in comparison to Kim et al. [29]: (a) BMP of intermediate disparity
maps and (b) MSE of estimated confidence maps as evolving training itera-
tions. Note that ‘Fixed’ estimates only confidence without refining matching
cost in our method.

To evaluate the performance of confidence estimation quan-
titatively, we used the sparsification curve and its area under
curve (AUC) as used in [14], [15], [18], [22]. The spar-
sification curve draws a bad pixel rate while successively
removing pixels in descending order of confidence values in
the disparity map, thus it enables us to observe the tendency
of prediction errors. AUC quantifies the ability of a confi-
dence measure to estimate correct matches. For the higher
accuracy of the confidence measure, its AUC value is lower.
In addition, we measured mean squared errors (MSE) between
estimated confidence and ground-truth confidence. To evaluate
the disparity refinement performance, we also measured the
bad matching percentage (BMP) as in [39]. Note that the BMP
was obtained by measuring the ratio of erroneous pixels.

C. Unified Depth and Confidence Estimation Analysis

In order to demonstrate the synergistic effects of the
proposed framework that simultaneously generates disparity
and confidence maps, we first analyzed the convergence
in comparison to the existing unified method [29]. Fig. 7
shows the qualitative results by evolving iterations. Fig. 8
and Fig. 9 show qualitative results of our method in com-
parison to [29]. For quantitative evaluations, we measured
the average BMP of intermediate disparity maps at every
50 epochs, as shown in Table I and Fig. 10(a). Note that
the conventional methods [21]–[23] estimate confidence map
on fixed disparity map, while the proposed method as well
as [8], [29] generates the intermediate disparity map by

refining initial cost volumes and predicts the confidence map
accordingly. In [8], [29], the BMP decreased as evolving the
number of iterations, but was saturated. The proposed method
shows the lowest BMP, demonstrating the superiority of the
proposed method. In addition, by jointly using supervised
and unsupervised disparity loss functions, our method has
shown highly improved performance. We further analyzed
the confidence estimation performance as evolving the iter-
ations. For quantitative evaluations, we measured the MSE
between estimated confidence and ground-truth confidence.
Fig. 10(b) shows the MSE on MID 2014 dataset [40] obtained
by MC-CNN for evolving epochs,3 which demonstrates the
superior performance of our confidence estimation. Especially,
our method has shown the robustness against challenging
regions such as reflective surfaces and textureless regions,
as shown in Fig. 8, and consistently reliable performances on
pole, bicycle, and pedestrian regions, as shown in Fig. 9.

D. Confidence Estimation Analysis

1) Ablation Study: We then analyzed our confidence estima-
tion networks with ablation evaluations, with respect to color
feature extractor and dynamic fusion module. For quantitative
evaluations, we measured the average AUC values for various
set of inputs and fusion methods.

First of all, ablation experiments to validate the effects
of color feature extractor show that the confidence estimator
can be improved by extracting the color feature as shown
in Table II. Qualitative results also show the effectiveness
of color feature extractor. Fig. 5(d) and Fig. 5(f) exemplify
the refined disparity with the estimated confidences that use
bi-modalities (cost volume and disparity) and tri-modalities
(cost volume, disparity, and color), respectively. Secondly,
we evaluated two different fusion methods; simple concate-
nation and dynamic fusion. Table II shows the effects of the
adaptive weight learned with dynamic fusion module.

2) Comparison to Other Methods: In order to measure the
performance of the confidence estimator in comparison to
other methods, we compared the average AUC values of our
method with conventional learning-based approaches using
handcrafted confidence measures [14]–[18] and CNN-based
methods [8], [21], [22], [28]. In these experiments, we only

3In these experiments, we did not measure the sparsification curve and AUC
since the intial disparities are actively varied as evovling iterations.
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Fig. 11. Comparisons of sparsification curves for MID 2006 [39] using
(a) census-SGM and (b) MC-CNN, MID 2014 [40] using (c) census-SGM
and (d) MC-CNN, and KITTI 2015 dataset [41] using (e) census-SGM and
(f) MC-CNN, respectively. The sparsification curve for the ground-truth
confidence map is described as ‘Lower bound’.

TABLE II

ABLATION STUDY FOR EACH COMPONENT OR OUR METHOD ON MID
2006 [39], MID 2014 [40], AND KITTI 2015 [53] DATASET,

WHEN THE INITIAL MATCHING COST IS OBTAINED

USING (TOP) CENSUS-SGM [1] AND

(BOTTOM) MC-CNN [7]

evaluated the confidence estimation module in our method,
thus we denote our methods as ‘Ours (Conf)’. Furthermore, for
fair comparison, we also evaluated the confidence estimation
performance only for [8], [29], i.e., Shaked et al. (Conf) [8]
and Kim et al. (Conf) [29]. The lower bound of AUC can be
obtained with a ground-truth confidence map. Sparsification

Fig. 12. Comparisons of AUC values for (a) census-based SGM and
(b) MC-CNN for the KITTI 2015 dataset [41]. We sort the AUC values in the
ascending order according to the AUC values. The ‘Lower bound’ of AUC
values are computed using the ground-truth confidence map.

curves for MID 2014 dataset [40] and KITTI 2015 dataset [41]
with census-based SGM and MC-CNN are shown in Fig. 11.
The results have shown that the proposed confidence esti-
mator exhibits a better performance than both conventional
handcrafted approaches and CNN-based approaches. Fig. 12
describes the AUC values, which are sorted in ascending order,
for the KITTI 2015 dataset [41] with census-based SGM and
MC-CNN, respectively. The average AUC and MSE values
with census-based SGM and MC-CNN for MID 2006, MID
2014, and KITTI 2015 datasets were summarized in Table III.
The handcrafted approaches showed inferior performance than
the proposed method due to low discriminative power of
the handcrafted confidence features. CNN-based methods [8],
[21], [22], [28] have improved confidence estimation perfor-
mance compared to existing handcrafted methods such as [15],
but they are still inferior to our method as they rely on
either used only estimated disparity maps or cost volume
to predict unreliable pixels. Especially, the proposed method
always yields the lowest AUC values, showing the superiority
of the proposed method compared to the existing CNN-based
methods [8], [21], [22], [28].

In addition, the estimated confidence maps are qualitatively
shown in Fig. 13, Fig. 14, Fig. 15, and Fig. 16. Experimental
results demonstrate that the proposed networks enable us
to estimate more accurate disparity and confidence maps
simultaneously in a boosting manner.

E. Depth Refinement Analysis

To verify the robustness of the confidence measures,
we refined the disparity map using the confidence map esti-
mated by several confidence measure approaches including
ours. For refining the disparity maps, we used AGCPs-based
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Fig. 13. The confidence and refined disparity maps on MID 2006 dataset [39] using census-SGM (first two rows), and MC-CNN (last two raws). (a) color images
and initial disparity maps, refined disparity maps with confidence maps estimated by (b) Park and Yoon [15], (c) Poggi and Mattoccia [16], (d) CCNN [21],
(e) PBCP [22], (e) Ours (Conf), and (g) ground-truth confidence map. Our method has shown the robustness againt challenging regions such as reflective
surfaces and textureless regions.

Fig. 14. The confidence and refined disparity maps on MID 2014 dataset [40] using census-SGM (first two rows), and MC-CNN (last two rows). (a) color
images and initial disparity maps, refined disparity maps with corresponding confidence maps estimated by (b) Haeusler et al. [18], (c) Poggi and Mattoccia [21],
(d) Shaked and Wolf [8], (e) Kim et al. (Conf) [29], (f) Ours (Conf), and (g) ground-truth confidence map.

propogation without additional post-processing to clearly show
the performance gain achieved by the confidence measure. To
evaluate the quantitative performance, we measured an average
BMP for the MID 2006 [39], MID 2014 [40], and KITTI
2015 [41] datasets. Table IV show the BMP with thresholds
of one and three pixels for MID 2006 [39], MID 2014 [40],
and KITTI 2015 [41] dataset when using census-based SGM

and MC-CNN, respectively. For MID 2006 and MID 2014,
since there are occluded pixels in ground-truth disparity map,
we computed the BMP only for visible pixels. The KITTI
2015 benchmark provides a sparse ground-truth disparity map
thus we evaluated the BMP only for sparse pixels with the
ground-truth disparity values. The proposed method achieves
the lowest BMP in all experiments.
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Fig. 15. The confidence and refined disparity maps on KITTI 2015 dataset [41] using census-SGM (first two rows), and MC-CNN (last two rows). (a) color
images and initial disparity maps, refined disparity maps with confidence maps estimated by (b) Spyropoulos et al. [14], (c) LFN [28], and (d) Ours (Conf).
Our method has shown consistently reliable performances on pole and car regions.

TABLE III

THE AVERAGE AUC AND MSE VALUES FOR MID 2006 [39], MID 2014 [40], AND KITTI 2015 [41] DATASET. THE AUC VALUE OF GROUND-TRUTH

CONFIDENCE IS MEASURED AS ‘LOWER BOUND’. THE RESULT WITH THE LOWEST AUC VALUE IN EACH EXPERIMENT IS HIGHLIGHTED

TABLE IV

THE BMP OF THE RESULTANT DISPARITY MAP ON MID 2006 [39], MID 2014 [40], AND KITTI 2015 [41] DATASET WITH CENSUS-BASED SGM. THE
BAD PIXEL ERROR RATE OF REFINED DISPARITY MAPS USING GROUND-TRUTH CONFIDENCE IS MEASURED AS ‘LOWER BOUND’. THE BMP IS

MEASURED WITH ONE AND THREE PIXEL ERRORS. THE RESULT WITH THE LOWEST BMP IN EACH EXPERIMENT IS HIGHLIGHTED

Fig. 13, Fig. 14, Fig. 15, and Fig. 16 display the disparity
maps refined with the confidence maps estimated from the
existing handcrafted classifiers [14]–[17], CNN-based clas-
sifiers [8], [21], [22], [28], and our method, respectively.

It was clearly shown that the erroneous matches are reli-
ably removed using our confidence estimator. For the KITTI
2015 dataset [41] and Cityscapes dataset [59], erroneous
disparities usually occur in textureless regions (e.g., sky and
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Fig. 16. The confidence and refined disparity maps on Cityscapes dataset [59] using census-SGM (1-4 rows), and MC-CNN (5-8 rows). (a) color images
and initial disparity maps, refined disparity maps with confidence maps estimated by (b) Park and Yoon [15], (c) CCNN [21], (d) LFN [28], and (e) Ours
(Conf). Our method has shown consistently reliable performances on pole and car regions.

road), as exemplified in Fig. 15 and Fig. 16. Conventional
approaches [16], [21], [22], [28] show the limited performance
for detecting incorrect pixels in textureless regions, and thus
they affect the matching quality of the subsequent disparity
estimation pipeline. In contrast, the proposed method can
detect mismatched pixels more reliably.

VII. CONCLUSION

We presented a method that jointly estimates disparity and
confidence through deep networks in an adversarial fashion.
We formulated the generative cost aggregation and discrimi-
native confidence estimation networks as two adversarial play-
ers. We proved that the discriminative confidence estimation
networks not only generate the confidence map, but operate
as the discrimator to boost the cost aggregation networks. In
addition, the dynamic fusion module was presented to benefit
from complementary information of matching cost, disparity,

and color image in confidence estimation. Experimental results
have shown that this method can improve the disparity and
confidence estimation performance even in challenging real
driving circumstances. A direction for further study is to
examine how the proposed networks could be learned in a
fully unsupervised fashion.
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