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Correspondence, correspondence, 
correspondence 

• Image alignment 
• Image registration 
• Image matching 
• Optical flow 
• Stereo 

 

[Aubry et al., CVPR’14] 
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A number of challenges  
• Large displacement 
• Non-rigid motion 
• Independent object motion 
• Small objects 

 
• Photometric differences (e.g. exposure, tone, sharpness) 
• Weakly textured regions 

 
• Matching across different scene contents 

 
• Motion coherence vs. boundary/detail preserving 
• Precision vs. recall, density, spatial coverage/distribution 

 
• Computational load 
• Memory cost 
• Large hypothesis space 

Robust 

Dense 

Fast 
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Applications of Dense Correspondences 
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Slide courtesy T. Hassner 

Why is this 
useful? 

 [Hassner&Basri ’06a, ‘06b,’13] 

Shape by-example 

[Liu, Yuen & Torralba 
’11; Rubinstein, Liu & 
Freeman’ 12 ] 

Depth transfer 

Label transfer / scene parsing  

Face recognition 

[Liu, Yuen & Torralba ’11] 

Fingerprint recognition 

[Hassner, Saban & Wolf] 

New view synthesis 

[Hassner ‘13] 
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Taxonomy (a matrix form) 
Typical MAP setup: Matching evidence term with 
build-in coherence or smoothness regularization 

• Matching evidence 
evaluation (Descriptors) 
– General local features 
– Specific tuned features 
– Similarity measures 
– Learned 

features/measures 

• Regularization 
– Local aggregation 
– Non-local/semi-global 

aggregation or 
regularization 

– Global 
discrete/continuous 
labeling optimization 

– Continuous variational 
models 

– Non-parametric motion 
models 
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1. How well can we describe input images in a local manner? 
 
 
 
 
 
 

2. How well can we optimize an objective defined for estimating 
visual correspondence? 

Ex) SIFT (Scale-invariant feature transform) 

Ex) Belief Propagation 
      (message passing algorithm) 

What decides the performance of visual correspondence? 
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General Formulation 
• Find the label 𝑙𝑙𝑝𝑝 for each pixel 𝑝𝑝, for instance, by minimizing the 

following objective  consisting of the data fidelity 𝐸𝐸𝑝𝑝 and the prior 
term 𝐸𝐸𝑝𝑝𝑞𝑞 

Evaluating matching evidences with 
local image descriptors or matching 
similarity measures  

Enforcing the spatial smoothness constraint 
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Evaluating matching evidences: local image descriptors and 
matching similarity measures 

• Descriptors for matching (sparse) interest points 
– SIFT [1], BRISK [2], BRIEF [3], Affine SIFT (ASIFT) [4] 

 

• Descriptors for dense wide-baseline matching 
– DAISY [5] 

 

• Descriptors for semi-dense large displacement matching 
– Deep Matcher [6] 

 

• Descriptors for matching semantically similar image parts (e.g. cross-domain 
matching) 
– Local Self-Similarity (LSS) [7], Locally Adaptive Regression Kernels (LARK) [8] 

 

• Similarity measures for handling photometric and multi-modal variations  
– Rank Transform, Census transforms [9], Mutual Information (MI) [10], Normalized Cross-

Correlation (NCC) [11], Zero-mean Normalized Cross-Correlation (ZNCC) [12], Dense 
Adaptive Self-Correlation (DASC) [13,14], Deep Self-Correlation (DSC) Descriptor [16] 

 

• Future work/trend: Learned matching similarity from CNN models, e.g. [CVPR’15] 
– Computing the Stereo Matching Cost With a Convolutional Neural Network [full paper] [ext. abstract] 

Jure Žbontar, Yann LeCun 

http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zbontar_Computing_the_Stereo_2015_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/1B_053_ext.pdf
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3. M. Calonder, et al., “BRIEF: Computing a local binary descriptor very fast,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012. 
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8. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and reconstruction,” IEEE Trans. on Image Processing, 2007. 
9. R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” ECCV 1994. 
10. H. Hirschmuller, “Stereo processing by semi-global matching and mutual information,” IEEE Trans. on Pattern Analysis and Machine 
Intelligence, 2008. 
11. Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Trans. on Pattern Analysis 
and Machine Intelligence, 2011. 
12. X. Shen, L. Xu, Q. Zhang, and J. Jia, “Multi-modal and multi-spectral registration for natural images,” ECCV 2014. 
13. S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal and Multi-
spectral Correspondence,” CVPR 2015. 
14. S. Kim, D. Min, B. Ham, M. N. Do, and K. Sohn, “ DASC: Robust Dense Descriptor for Multi-modal and Multi-spectral Correspondence 
Estimation,” IEEE Trans. on Pattern Analysis and Machine Intelligence. (under revision) 
15. S. Kim, D. Min, S. Lin, and K. Sohn, “Deep Self-Correlation Descriptor for Dense Cross-Modal Correspondence,” ECCV 2016 
16. H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Trans. on Pattern 
Analysis and Machine Intelligence, 2009. 
17. C. Vogel, S. Roth, and K. Schindler, “An Evaluation of Data Costs for Optical Flow,” GCPR 2013. 
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Sparse Dense 

Density 

SIFT, BRIEF, 
BRISK, SURF 

DAISY, DASC, 
DSC 

Photometric Distortion 

Deep 
Matcher 

Exposure Imaging Modality 

Rank Transform, Census transform, Mutual 
Information, Normalized Cross-Correlation (NCC) 

DASC, DSC 
Absolute NCC (ANCC) 

Illumination Semantically Similar 

? 

Geometric Distortion 

None Affine transform 

DASC Affine SIFT 

Scale, rotation Projective transform 

? 
SIFT, SURF, Deformable spatial 
pyramid, Scale-space SIFT, 
DAISY Filter Flow, GI-DASC 

(Considering computational redundancy!) 
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Paper List 
• E. Tola, V. Lepetit, and P. Fua, “DAISY: An efficient dense descriptor applied to 

wide-baseline stereo,” IEEE Trans. Pattern Analysis and Machine Intelligence, 
2010. 

• E. Schechtman and M. Irani, “Matching local self-similarities across images and 
videos,” CVPR 2007. 

• S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “DASC: Dense Adaptive 
Self-Correlation Descriptor for Multi-modal and Multi-spectral Correspondence,” 
CVPR 2015. 

• S. Kim, D. Min, B. Ham, M. N. Do, and K. Sohn, “DASC: Robust Dense Descriptor 
for Multi-modal and Multi-spectral Correspondence Estimation,” IEEE Trans. on 
Pattern Analysis and Machine Intelligence. (under revision) 

• S. Kim, D. Min, S. Lin, and K. Sohn, “Deep Self-Correlation Descriptor for Dense 
Cross-Modal Correspondence,” ECCV 2016 



PART 1.1: DAISY: AN EFFICIENT DENSE 
DESCRIPTOR 

E. Tola, V. Lepetit, and P. Fua, “DAISY: An efficient dense descriptor applied to wide-baseline stereo,” IEEE 
Trans. Pattern Analysis and Machine Intelligence, 2010. 
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Left Image Right Image 

NCC results SIFT results DAISY results 

DAISY Descriptor 
• DAISY [Tola’2010’TPAMI] 

– SIFT works well for sparse wide-baseline matching, but it is very 
SLOW for dense matching tasks. 

– DAISY retains the robustness of SIFT and be computed efficiently. 

NCC: Normalized Cross Correlation 
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DAISY Descriptor 
• Gaussian convolved orientation maps 

 
 

– 𝑮𝑮𝚺𝚺: Gaussian convolution filter with variance 𝚺𝚺 
– 𝝏𝝏𝑰𝑰/𝝏𝝏𝒐𝒐: image gradient in direction 𝒐𝒐. 

 
 
 
 

𝑮𝑮𝒐𝒐𝚺𝚺 = 𝑮𝑮𝚺𝚺 ∗ (𝝏𝝏𝑰𝑰/𝝏𝝏𝒐𝒐)+ 
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Step 1. Compute histograms for each pixel 
 

ℎ𝛴𝛴 𝑢𝑢,𝑣𝑣 = [𝐺𝐺1
𝛴𝛴 𝑢𝑢, 𝑣𝑣 ,𝐺𝐺2

𝛴𝛴 𝑢𝑢,𝑣𝑣 , … ,𝐺𝐺8
𝛴𝛴(𝑢𝑢,𝑣𝑣)]𝑇𝑇 

 

ℎ𝛴𝛴 𝑢𝑢,𝑣𝑣 : histogram at 𝑢𝑢, 𝑣𝑣  
𝐺𝐺1

𝛴𝛴 𝑢𝑢,𝑣𝑣 : Gaussian convolved orientation maps 
 

Step 2. Normalize histograms to unit norm 
 

Step 3. DAISY descriptor is computed as 
 

𝐷𝐷 𝑢𝑢0, 𝑣𝑣0 =

[ℎ𝛴𝛴1 𝑢𝑢, 𝑣𝑣 ,
ℎ𝛴𝛴1 𝐼𝐼1(𝑢𝑢, 𝑣𝑣) , … ,ℎ𝛴𝛴1 𝐼𝐼𝑁𝑁(𝑢𝑢, 𝑣𝑣) ,
ℎ𝛴𝛴2 𝐼𝐼1(𝑢𝑢, 𝑣𝑣) , … ,ℎ𝛴𝛴2 𝐼𝐼𝑁𝑁(𝑢𝑢, 𝑣𝑣) ,
ℎ𝛴𝛴3 𝐼𝐼1(𝑢𝑢, 𝑣𝑣) , … ,ℎ𝛴𝛴3 𝐼𝐼𝑁𝑁(𝑢𝑢, 𝑣𝑣) ]

𝑇𝑇

 

DAISY Descriptor 
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DAISY Feature Descriptor 

DAISY Descriptor 
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SIFT & SURF & DAISY Comparison 



19 

Runtime Analysis 



PART 1.2: LOCAL SELF-SIMILARITY 
 E. Schechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. 
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Gradients features 

Color features 

Description 

Does It describes underlying visual Property? 

… 

Conventional Image Descriptors 
• Measuring image properties from images. 

– Gradient, edge, or spatial structures 
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Conventional Descriptors vs. Self-Similarity 

Do Not share common image properties (colors, textures, edges), but Do 
share a similar geometric layout of local internal self-similarities.  

• Conventional Descriptors 
– Direct visual properties shared by images of the same class (e.g. colors, 

gradients,…) 
 

• Self-Similarity 
– Indirect property: Geometric layout of repeated patches within an image 
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Local Self-Similarity (LSS) Descriptor 

• Explore local internal layouts of self-similarities 
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Local Self-Similarity (LSS) Descriptor 
• The LSS may be useful in overcoming limitations of existing 

descriptors in establishing correspondence between multi-modal 
images. 
 

• An input image                                 , a dense descriptor                         
is defined on a local support window centered at each pixel 𝑖𝑖 

Key idea: The local internal layout of self-
similarities is less sensitive to photometric 
distortions 
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Local Self-Similarity (LSS) Descriptor 
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• Step 1: Compute self-similarity on correlation surface 
– Determine 𝑁𝑁 × 𝑁𝑁 correlation surface 𝐶𝐶(𝑖𝑖, 𝑗𝑗) 

 
 
 

• Step 2: Transform into log-polar coordinates, and select the 
maximal correlation value in each bin 

 
 
 
 

Local Self-Similarity (LSS) Descriptor 

This descriptor vector is normalized by linearly 
stretching its values to the range [0..1] 
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Step 1: Compute correlation surface. 
 

Step 2: Transform into log-polar coordinates, and select the maximal correlation 
value in each bin. 

Local Self-Similarity (LSS) Descriptor 
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Properties and Benefit of LSS Descriptor 
• Locality 

– Self-similarities are treated as a local image property, and are accordingly 
measured locally (within a surrounding image region). 

 

• Robust to Affine Deformation 
– The log-polar representation accounts for local affine deformation in the self-

similarities. 
 

• Robust to Non-Rigid Deformation 
– Insensitive to the exact position of the best matching patch within that bin 

(similar to the observation used for brain signal modelling). 
 

• Meaningful Image Patterns 
– The use of patches (at different scales) captures more meaningful image 

patterns than individual pixels. 
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LSS Descriptor Applications 

• Object Recognition, Image Retrieval, Action Recognition 
– Ensemble matching [Shechtman CVPR 07] 
– Nearest neighbor matching [Boiman CVPR 08] 
– Bag of Local Self-Similarities [Gehler ICCV09, Vedaldi ICCV09, 

Horster ACMM08, Lampert CVPR09,  Chatfield ICCV09] 
1. Compute LSS descriptors for an image. 
2. Assign the LSS descriptors to a codebook. 
3. Represent the image as a histogram of LSS descriptors. 
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Single template image 

The images against which it was compared with the 
corresponding detections. 

Interest Object Detection in Images 
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Hand-sketched template 

The images against which it was compared with the 
corresponding detections. 

Image Retrieval by “Sketching” 
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Img 1 
(template) 

Img 2 LSS GLOH 
(extended SIFT) 

Shape 
Context 

MI 

Comparison to Other Descriptors 



PART 1.3: DASC: DENSE ADAPTIVE SELF-
CORRELATION DESCRIPTOR 

S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “DASC: Dense Adaptive Self-Correlation Descriptor 
for Multi-modal and Multi-spectral Correspondence,” CVPR 2015. 
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Can we find correspondences in the images below? 

• RGB-NIR, Radiometric distortion, Motion Blur 

Yes! It is possible using our new descriptor (DASC). 
 
DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal and Multi-
spectral Correspondence, CVPR 2015 
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Image Descriptor Matters! 
• DASC: Dense Adaptive Self-Correlation Descriptor for Multi-modal 

and Multi-spectral Correspondence, CVPR 2015 
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Our Goal 

1) Addressing photometric distortions in multi-modal and  
multi-spectral images 

2) The descriptor should be dense, and be computed very efficiently 

Our Goal 

1. A patch-wise receptive field pooling with sampling patterns 
optimized via a discriminative learning. 

2. An efficient scheme using edge-aware filtering (EAF)  
to compute dense descriptors for all pixels 

3. An intensive comparative study with state-of-the-art methods 
using various datasets. 

Contribution 
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Problem of Existing Descriptors 
• Challenging limitations in multi-modal and multi-spectral images 

– Nonlinear photometric deformation even within a small 
window, e.g., gradient reverses and intensity variation. 

– Outliers including structure divergence caused by shadow or 
highlight. 

Most of the existing descriptors may fail to compute a 
reliable descriptor in the images below. 
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Problem of Existing Descriptors (including LSS) 
However, even LSS often produces inaccurate correspondence. 
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Dense Adaptive Self-Correlation (DASC) 

1) The center-biased max pooling is very sensitive to the degradation of a center 
patch. 
 

2) No efficient computational scheme designed for computing dense descriptor 

Limitation of the LSS descriptor 

Intuitions for the DASC Descriptor 

1) There frequently exist non-informative regions which are locally degraded, 
e.g., shadows or outliers. 
 

2) The randomness enables a descriptor to encode structural information more 
robustly. 
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LSS vs. DASC 
• Center-biased dense max pooling vs. Randomized pooling 

– Note that the DASC descriptor does NOT use the max operation. 
– The max operation may lead to wrong localization! 

(a) LSS descriptor                                   (b) DASC descriptor 
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Randomized Receptive Field Pooling 

• Using all sampling patterns does NOT always produce the best 
results 

Let’s select a subset of sampling patterns randomly 

What about learning this sampling patters? 

Ex) 𝟒𝟒𝟒𝟒 points 
 # of possible sampling 

pattern: 𝟒𝟒𝟒𝟒 × 𝟒𝟒𝟒𝟒/𝟐𝟐 
 Let’s just select 𝟑𝟑 

sampling patterns 
randomly. 
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Randomized Receptive Field Pooling 
• Sampling Pattern Learning 

– Key idea: Learn the sampling pattern using training pairs 

An amount of contribution of 
each candidate sampling 
pattern 
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Randomized Receptive Field Pooling 
• Sampling Pattern Learning 

– The training data-set was built from images taken under varying 
illumination conditions and/or imaging devices 
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The DASC Descriptor Formulation 
• With the sampling patterns learned, our next job is to compute the 

self-similarity between two patches 
 

• Adaptive Self-Correlation (ASC) Measure 
– For given two patches         and       , the patch-wise similarity is 

measured using a truncated robust function 
 
 

– For                     , we measure the Adaptive Self-Correlation (ASC) 
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We wish to compute the descriptor densely! 
• Straightforward computation of the ASC for the selected sampling 

patterns of all pixels is extremely time-consuming. 

 
 
 
 

𝐼𝐼: Image size,                 𝑁𝑁: Patch size 
𝐿𝐿: the number of sampling patterns 

Observation: There are computational redundancies in the equation  
                          above when executing this for all pixels. 
Our Solution: Let’s employ the constant-time edge-aware filter (EAF)  
                          to reduce the redundancies 
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Efficient Computation of DASC 

• In order to make using EAF computationally feasible, we 
approximate the ASC with an asymmetric weight 

 
 
 
 
 
 
 

• The similarity measure above can be computed in O(1) time using 
e.g., the Guided Filter. But, Other kinds of EAFs can be used as well. 

One problem is the symmetric weight                     varies for each 
𝑙𝑙, and it is 6-D vector, which increases a computational burden 
needed for employing constant-time EAFs.  
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Efficient Computation of Dense Descriptor 
𝐼𝐼: Image size,                 𝑁𝑁: Patch size 
𝐿𝐿: the number of sampling patterns Straightforward computation of ASC for the 

selected sampling patterns of all pixels 

Efficient computation of approximated ASC for the 
selected sampling patterns of all pixels using EAF 

No dependency on 
the patch size! 
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Overview of EAF 
Edge-aware Filtering (EAF) = Adaptive summation with similarity of pixels 

𝐼𝐼𝑂𝑂 𝒑𝒑 = � 𝒘𝒘 𝒑𝒑,𝒒𝒒 𝐼𝐼(𝒒𝒒)
𝑞𝑞∈𝑭𝑭(𝒑𝒑)

 

𝒘𝒘 𝒑𝒑,𝒒𝒒 : Pixel similarity between 𝒑𝒑 and 𝒒𝒒 

* 
Input 𝐼𝐼 Output 𝐼𝐼𝑂𝑂 

𝒑𝒑 

Convolution 

Using a better kernel or global optimization? 𝐼𝐼𝑂𝑂 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝑁𝑁𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑖𝑖𝑁𝑁𝑁𝑁(𝐼𝐼) 
          ≈  ∑ 𝐿𝐿𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝑁𝑁𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑖𝑖𝑁𝑁𝑁𝑁𝑘𝑘(𝐼𝐼)𝑘𝑘  

Speed Filtering quality 
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Intuitive example: Gaussian blur 

* 

* 

* 

input output 

Same Gaussian kernel everywhere 

Over-smoothing: Halo 
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Intuitive example: Bilateral filter 

* 

* 

* 

input output 

The kernel shape depends on the image content. 

F(p) 

Edge-preserving 
capability is important 
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O(1) Time EAF 

• O(1) time algorithm? 

0
10
20
30
40
50
60
70

1 6 11 16 21 26
0

10
20
30
40
50
60
70

1 6 11 16 21 26

Window (𝑺𝑺) size 

( ) ( )∑
∈

−−=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs σσ

Processing time (sec) 

Brute force algorithm 

? 

O(1) time algorithm 
Window (𝑺𝑺) size 

Processing time (sec) 

Non-linear weight! 
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O(1) EAF – State-of-the-arts 

• O(1) Time Bilateral Filter 
– F. Porikli, “Constant time O(1) bilateral filtering,” CVPR 2008 
– S. Paris and F. Durand, “A fast approximation of the bilateral filter using a signal processing approach,” ECCV 

2006 
– Q. Yang, K.-H. Tan, and N. Ahuja, “Real-time O(1) bilateral filtering,” CVPR 2009 

• Guided Filter (GF) 
– K. He, J. Sun, and X. Tang, “Guided image filtering,” ECCV 2010 

• Cross-Based Local Multipoint Filter (CLMF) 
– J. Lu, K. Shi, D. Min, L. Lin, and M. N. Do, "Cross-based local multipoint filtering," CVPR 2012 

• Domain Transform Filter (DT) 
– E. S. L. Gastal and M. M. Oliveira, “Domain transform for edge-aware image and video processing,” 

SIGGRAPH 2011 

• Adaptive Mainfold (AM) 
– E. S. L. Gastal and M. M. Oliveira, “Adaptive manifolds for real-time high-dimensional filtering,” SIGGRAPH 

2012 

• L0 smoothing (L0) 
– L. Xu, C. Lu, Y. Xu, J. Jia, “Image Smoothing via L0 Gradient Minimization,” SIGGRAPH Asia 2011 

• Fast Global Smoothing (FGS) 
– D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast Global Image Smoothing Based on Weighted 

Least Squares,” IEEE Trans. on Image Processing, 2014 

GF, DT, AM, L0, FGS have been included in the official OpenCV release 3.1! 
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Overall Process of DASC Descriptor 
EAF: Edge-Aware Filtering 

Note that all pixels share the same sampling pattern! 
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Computational Complexity Analysis 

[6] E. Tola, V. Lepetit, and P. Fua, Daisy: An efficient dense descriptor applied to wide-baseline stereo, IEEE TPAMI, 2010. 
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Experimental Environments 
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Parameter Setting 
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Middlebury Stereo Benchmark 
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Middlebury Stereo Benchmark 
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Multi-modal and Multi-spectral Image Pairs 
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Multi-modal and Multi-spectral Image Pairs 
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Multi-modal and Multi-spectral Image Pairs 
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Concluding Remarks 
• The robust novel local descriptor called the DASC has been proposed 

for dense multi-modal and multi-spectral matching. 
– Adaptive self-correlation measure and patch-wise receptive field pooling. 

 

• Secret Source 
– Speed: With the fast edge-aware filters (EAF), our DASC descriptor can  

              compute the dense descriptor very efficiently. 
– Robustness and Accuracy: 1) Randomness + 2) Non-center biased sampling +  

                                                3) Adaptive Self-Correlation (ASC) 



PART 1.4: EXTENSION – DASC 
(SCALE AND ROTATION INVARIANCE) 

DASC: Robust Dense Descriptor for Multi-modal and Multi-spectral Correspondence Estimation,” IEEE Trans. 
on Pattern Analysis and Machine Intelligence. (under revision) 
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Limitation of DASC 
• NOT appropriate to deal with geometric variations 

 

Two images with both geometric and photometric variations 

GI-DASC (Geometry-invariant DASC) : scale and rotation 
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Difficulty in Densely Estimating Scale and Rotation 

Edge and Corners: Easy to estimate 
scale and rotation ? 
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Speed vs. Geometric Invariance 
• Suppose two adjacent pixels have different scales and rotations 

Input image 

p1 p2 

p1: scale = 1, rotation = 0 
p2: scale = 1.5, rotation = 30 

Problem: Sampling patterns of p1 
and p2 are NOT overlapped 
 Efficient computation of DASC is 
NOT possible! 
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Our Solution: Superpixel-induced Framework 
• Trade-off between speed and Geometric Invariance 

Assumption: Scale and rotation within a superpixel remain unchanged 

Superpixel 𝑆𝑆𝑚𝑚 
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Dense Estimation of Scale and Rotation 
1. Estimating sparse geometric field (scale and rotation) 

– Similar to SIFT, we estimate scale and rotation for features only. 
 

2. Assign scale and rotation for each superpixel, where valid 
geometric fields exist. 

 

3. Interpolate geometric fields for remaining superpixels through the 
following quadratic optimization 

𝐺𝐺𝑚𝑚: Dense geometric field (scale and rotation) 
𝐺𝐺∗𝑚𝑚: Initial sparse geometric field from step 2 
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Dense Estimation of Scale and Rotation 
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GI-DASC 
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Summary 
• GI-DASC 

– DASC: works well for photometric distortion (illumination 
variation, RGB vs. NIR) 

– SIFT: works well for geometric distortion (e.g. scale and rotation) 
 GI-DASC: works well for both photometric and geometric 
distortion (based on superpixel-induced framework) 

Dense matching? 

Remaining Question: 
How to deal with affine transform or projective transform? 



PART 1.5: EXTENSION – DASC 
(DEEP SELF-CORRELATION DESCRIPTOR) 

Deep Self-Correlation Descriptor for Dense Cross-Modal Correspondence, ECCV 2016 
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Non-rigid Deformation vs. Matching Details 
• LSS vs. DASC 

– Center-biased dense max pooling vs. Randomized pooling 
 

• Max pooling 
– Pros: Robust to non-rigid deformation 
– Cons: Degenerate the matching details 

(a) LSS descriptor                    (b) DASC descriptor 
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Non-rigid Deformation vs. Matching Details 

 

– DASC descriptor is definitely robust to modality variation 
– However, it is sensitive to non-rigid image deformation. 

Matching cost in A Matching cost in B Matching cost in C 
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Handling Both Non-rigid Deformation and Matching Details 

• Key idea 
– 1) Self-correlational responses and 2) Deep architecture 
– Single Self-Correlation (SSC): Self-correlational responses 
– Deep Self-Correlation (DSC): Self-correlational responses + Deep architecture 

LSS descriptor DASC 
descriptor 

DSC descriptor 
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Single Self-Correlation (SSC) Descriptor 
• Reformulating LSS in a deep architecture 

 
 
 
 

Computing SSC 

Computing LSS 

self-correlation log-polar max-pooling 

multiple self-correlation circular spatial pyramid pooling 
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Circular Spatial Pyramid Pooling (C-SPP) 
• C-SPP 

– To pool the self-correlation responses within each 
hierarchical spatial bin in a circular configuration 
 
 
 

Examples of the circular spatial pyramidal bins 

S = 1 S = 2 S = 3 S = 4 S = 5 
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Efficient Computation of Self-Correlation Surface 

– Constructing self-correlation surface is very time-consuming 
1) To expedite processing, we utilize fast edge-aware filtering (EAF). 
2) Pre-computation scheme for self-correlation surfaces. 

 

𝐼𝐼: Image size, 𝑀𝑀𝐹𝐹: Patch size, 𝑁𝑁𝐾𝐾: # of sample patches, 𝑀𝑀𝑅𝑅 × 𝑀𝑀𝑅𝑅: Window size 

𝑀𝑀𝐹𝐹 → 1: Using EAF 
𝑁𝑁𝐾𝐾𝑀𝑀𝑅𝑅

2 → 4𝑀𝑀𝑅𝑅
2: Using the pre-computation of self-correlation surfaces 
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Pre-computation of self-correlation surfaces 

Image 
Window 

Computing 
correlation 

Computing 
correlation 

Computational 
redundancy exists! 

Patch 

Window 

Patch 

Window 
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Deep Self-Correlation (DSC) Descriptor 
• SSC vs. DSC 

– Average Pooling: Encoding self-similar structures at multiple 
levels, similar to a deep architecture 
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Experimental Results 
• Deep Self-Correlation (DSC) Descriptor 

– Dense correspondences for cross-modality (RGB-NIR, flash-
noflash, different exposure, and blurring) 

Image 1 Image 2 BRIEF LSS DASC SSC DSC 
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Experimental Results 

Image 1 Image 2 DAISY BRIEF LSS SSC DSC 

• Deep Self-Correlation (DSC) Descriptor 
– Dense correspondences for non-rigid image deformations 



PART 1.6: CONCLUDING REMARKS 
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Recent Work (MC-CNN) 

• Apply CNN to stereo matching! 

Computing the stereo matching cost with a convolutional neural network, CVPR 2015 
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Recent Work (MC-CNN) 

• MC-CNN 
1. Train two patches (positive or 

negative samples) 
2. Measure a similarity value between 

two patches in test phase 

= 
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Recent work (CNN-based descriptor 1) 

– Use a Siamese network (to accelerate the training process) 

Discriminative Learning of Deep Convolutional Feature Point Descriptors, ICCV 2015 

Complexity matters! 
 

Patch-wise similarity measure 
is extremely slow. 
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Recent work (CNN-based descriptor 1) 

• Extended Siamese network 
• A central-surround two-stream network that uses a siamese-type 

architecture to process each stream 
 

 

Learning to Compare Image Patches via Convolutional Neural Networks, CVPR 2015 

Conv+ReLU 

Max pooling 

Fully connected 
layer 
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Remaining Challenges 
• Hand-crafted feature descriptors 

– Finding a way of handling affine transform or projective 
transform 

– More generic framework for dealing with photometric distortion 
 

• Learning based descriptors 
– Simply applying CNNs to each patch is NOT a good way of 

extracting dense descriptors due to extremely huge 
computational complexity  Any better way of doing this? 
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